Abstract
We give formulae for the first homology of the n-braid group and the pure 2-braid group over a finite graph in terms of graph-theoretic invariants. As immediate consequences, a graph is planar if and only if the first homology of the n-braid group over the graph is torsion-free and the conjectures about the first homology of the pure 2-braid groups over graphs in Farber and Hanbury (arXiv:1005.2300 [math.AT]) can be verified. We discover more characteristics of graph braid groups: the n-braid group over a planar graph and the pure 2-braid group over any graph have a presentation whose relators are words of commutators, and the 2-braid group and the pure 2-braid group over a planar graph have a presentation whose relators are commutators. The latter was a conjecture in Farley and Sabalka (J. Pure Appl. Algebra, 2012) and so we propose a similar conjecture for higher braid indices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.