Abstract
A novel rifled nozzle was installed behind a conventional combustion exhauster to improve combustion efficiency. The rifled nozzles improve the momentum transmission, turbulent strength, and mixing efficiency between the central jet and annular jet. The flow characteristics behind the nozzles (rifled and unrifled) were visualized and detected using the smoke-wire flow visualization, particle image velocimetry, and hot-wire anemometry. The cold flow structures were categorized into four modes—jet flow, single bubble, dual bubble, and turbulent flow. The topological scheme was adopted to analyze and verify these flow modes. The flame structures behind the nozzles (rifled and unrifled) are classified into three modes—jet flame, flickering flame, and turbulent flame—using the direct-photo visualization. The flame height of a 12-rifled nozzle is decreased by about 50% under that of an unrifled nozzle. The flame shedding frequency declines rapidly in the flickering flame mode and the relationship between the Strouhal number (Sr) and annular velocity (ua) is Sr=0.0238+0.13/ua.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.