Abstract

This paper presents a new set of results concerning the use of higher/lower order modes as a means to implement bypass or cross coupling for applications in elliptic filter design. It is shown that the signs of the coupling coefficients to produce a transmission zero (TZ) either below or above the passband are, in certain situations, reversed from the predictions of simpler existing models. In particular, the bypass coupling to higher/lower order modes must be significantly stronger than the coupling to the main resonance in order to generate TZs in the immediate vicinity of the passband. Planar (H-plane) singlets are used to illustrate the derived results. This study should provide very important guidelines in selecting the proper main and bypass couplings for sophisticated filtering structures. Example filters are designed, built, and measured to demonstrate the validity of the introduced theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.