Abstract
The monthly/seasonal characteristics of the concentration and aerosol optical depth (AOD) of four aerosol components (water-soluble, insoluble, black carbon (BC), and sea-salt) and their direct radiative forcing (DRF) were investigated at three environmental locations in Southeast Texas. We used fine particulate matter (PM2.5) samples measured at one urban residential (Aldine (AD)) and two suburban (Deer Park (DP) and West Liberty (WL)) sites located around Houston during 2016–2017, and performed model-based analysis using the mass concentrations of the four aerosol components to evaluate their impact on the DRF. Overall, the concentrations, AODs, and DRFs of all four aerosol components at AD were higher than those at DP and WL during the study period. In particular, the water-soluble component was the most dominant contributor, except for absorbing BC. The monthly AOD patterns of the four individual aerosol components (especially, water-soluble and BC) at the three sites were found to have strong associations with their concentrations and/or relative humidity (RH). The DRFs at the top of the atmosphere (DRFTOA) and surface level (DRFSFC) for most of the aerosol components were found to be highest in winter 2017 (AD), spring 2016 and winter 2017 (DP), and winter 2016 and fall 2017 (WL). The exceptions were sea-salt and insoluble components, which showed a peak in summer 2016 and no distinct monthly variation, respectively. Uncertainties in the DRFs of the four target aerosol components calculated using in-situ RH measurements were found to be less than 20%, with the exception of the water-soluble component at WL (24%). A sensitivity test showed that the DRFs of the aerosol components were slightly and significantly influenced by changes in AOD and single scattering albedo, respectively; additionally, sensitively changed with RH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.