Abstract

A novel on-line micro pressurized liquid extraction (μPLE) method is introduced, which directly interfaces miniaturized solid sample preparation with HPLC for fast analysis. The technique employs rapid heating to remove analytes from 5–10 mg samples in typically 20–40 s using only about 300 μL of solvent. The resulting extract is then internally transferred to an HPLC injector for chromatographic analysis. Results show that good analyte recoveries can be achieved, similar to conventional PLE and off-line μPLE approaches, without manual sample handling. For example, 103% ± 3% (n = 4) of the acetylsalicylic acid present in pharmaceutical tablets was extracted into methanol after 20 s at 180 °C. Further, 105% ± 9% (n = 4) of the caffeine present in a green tea sample was extracted into methanol after 40 s at 275 °C. Typical time to analysis was about 95 s total for most samples, and solvents could also be easily alternated during trials to increase extract selectivity. The on-line μPLE system was applied to the extraction of model PAHs from a biochar matrix and was found to extract 97% ± 5% (n = 4) of anthracene present in the sample after a 30 s static and 60 s dynamic extraction at 220 °C. This yield is much better than results obtained by previous approaches and is attributed to the small size, high temperature, low thermal mass, and dynamic flow of the system. Findings indicate that the on-line μPLE system can greatly assist in such extractions and provide a useful method for rapidly preparing solid samples for analysis using little solvent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.