Abstract
A new reactor of array double dielectric barrier discharge (DDBD) combined with catalysis was prepared, and the effect of different factors on removal efficiency of toluene at pilot scale were investigated. The possible degradation mechanism was explored. The results indicate that the removal efficiency of toluene in the exhaust gas decreases with the increasing of the toluene initial concentration and the gas flow rate, but increases with the increasing of the specific energy density. When the air relative humidity is 55%, the removal efficiency of toluene is higher than that of the relative humidity by 85%. The results of XPS, FT-IR and GC-MS analysis show that the main intermediate products of removing toluene by DDBD combined with TiO2/Al2O3 catalyst are phenol, benzaldehyde, benzyl alcohol, benzoic acid, N-benzyl formamide, dimethyl terephthalate, dimethyl isophthalate and other substances. There are five possible pathways to degrade toluene by DDBD combined with TiO2/Al2O3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.