Abstract
When is a monic polynomial the characteristic polynomial of a symmetric matrix over an integral domain D? Known necessary conditions are shown to be insufficient when D is the field of 2-adic numbers and when D is the rational integers. The latter counterexamples lead to totally real cubic extensions of the rationals whose difierents are not narrowly equivalent to squares. Furthermorex 3β4x+1 is the characteristic polynomial of a rational symmetric matrix and is the characteristic polynomial of an integral symmetric p-adic matrix for every prime p, but is not the characteristic polynomial of a rational integral symmetric matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.