Abstract

Neural spike plays an important role in understanding brain activities, and in neural spike sorting, the features of signal are of great importance. This paper aims to have a review on features used to discriminate different originated spikes. The features are divided into three categories: features in the time domain, features in the transformation domain, and features of dimensional reduction. For each kind of feature, the basic principle, advantages, and disadvantages are described and discussed. Results showed that features in the time domain are suitable for on-chip or real-time spike sorting, while features in the transformation domain can be used in offline spike sorting aiming at high performance. For features of dimensional reduction, it makes a large number of features available in spike sorting. In conclusion, researchers need to determine features by balancing the minimization of calculation complexity and maximizing sorting performance according to different occasions and demands. Expectations are also made for future directions of spike feature studies. The article may guide both the physiologists who want to determine features in neural spike sorting and researchers who want to work on feature extracting algorithms further to achieve better performance in experimental challenges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.