Abstract

Two-dimensional quantitative nuclear magnetic resonance (2D qNMR)-based metabolomics was performed to understand characteristic metabolic profiles in different aging regimes (crust from dry-aged beef, inner edible flesh of dry-aged beef, and wet-aged beef striploin) over 4 weeks. Samples were extracted using 0.6 M perchlorate to acquire polar metabolites. Partial least squares-discriminant analysis showed a good cumulative explained variation (R2 = 0.967) and predictive ability (Q2 = 0.935). Metabolites of crust and aged beef (dry- and wet-aged beef) were separated in the first week and showed a completely different aspect in the second week via NMR-based multivariable analyses. Moreover, NMR-based multivariable analyses could be used to distinguish the method, degree, and doneness of beef aging. Among them, the crust showed more unique metabolic changes that accelerated proteolysis (total free amino acids and biogenic amines) and inosine 5′-monophosphate depletion than dry-aged beef and generated specific microbial catabolites (3-indoxyl sulfate) and γ-aminobutyric acid (GABA), while asparagine, glutamine, tryptophan, and glucose in the crust were maintained or decreased. Compared to the crust, dry-aged beef showed similar patterns of biogenic amines, as well as bioactive compounds and GABA, without a decrease in free amino acids and glucose. Based on these results, the crust allows the inner dry-aged beef to be aged similarly to wet-aged beef without microbial effects. Thus, 2D qNMR-based metabolomic techniques could provide complementary information about biochemical factors for beef aging.

Highlights

  • Meat aging is a series of biological and physiochemical transitions from muscle to meat after slaughter that causes proteolysis and enhances meat tenderness and palatability [1,2]

  • Meat for wet aging is vacuum-packed, while meat for dry aging is exposed to air without packaging [4]

  • principal components analysis (PCA) is usually used to discriminate differences of samples composed of multivariable datasets via variance maximization and dimension reduction [16]

Read more

Summary

Introduction

Meat aging is a series of biological and physiochemical transitions from muscle to meat after slaughter that causes proteolysis and enhances meat tenderness and palatability [1,2]. These changes could be used to improve meat quality under controlled environments, such as temperature, relative humidity, aging period, and the aging method by packaging conditions [3]. The major aging methods are divided into dry and wet aging. Meat for wet aging is vacuum-packed, while meat for dry aging is exposed to air without packaging [4]. Dry-aged meat is known to generate concentrated flavors (beefy and roasted) after aging, while wet-aged meat is known to induce sour and bloody/metallic flavors [4,5,6].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.