Abstract

This paper deals with the preliminary study on the HTSC persistent current switch (PCS) for MAGLEV in Korea. The onboard HTSC levitation magnet system for high-speed maglev has advantage in power consumption because it can be operated in persistent current mode (PCM). The high speed superconducting maglev operated in PCM does not need the additional electrical energy to provide levitation force. To develop the PCS having good characteristics, it is important to develop a technology to minimize the joint resistance between two superconducting wires. The HTSC levitation magnet system consists of one HTSC magnet wound with Bi-2223 wire and a persistent current switch (PCS). The inductance of the magnet was 18.5 mH and total joint resistance of the magnet was 5.74 x 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-7</sup> Omega. The PCS was experimented with respect to various ramping-up rates and magnitudes of charging current. The experimental results were compared with simulation results using finite different method. Based on these results, the current decay of 1 H class PCS using HTSC wire was calculated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.