Abstract
SummaryFilms with high permeability are necessary for the packaging of agricultural products that respire to avoid anoxic conditions. This research developed and characterised bioplastic nanocomposite films with enhanced permeation and increased strength. Thermoplastic starch (TPS) was compounded with silicon dioxide (SiO2) and blended with poly (butylene adipate‐co‐terephthalate) (PBAT) to produce bioplastic PBAT/TPS blend films via blown‐film extrusion. Different SiO2 contents (0.5%–1%) were dispersed in the matrices, causing interaction via hydrogen bonding with the TPS phase. SiO2 at 1% significantly improved melting of the polymer blends, giving increasing amorphous ratios of the polymeric films. Microstructures and surface topography indicated voids between incompatible components and porous structures that improved permeation. Increasing SiO2 content linearly enhanced oxygen and water vapour permeability by up to 39% and 16%, respectively. Tensile strength and elongation at break increased and decreased up to 40% and 32%, respectively, indicating increased rigidity due to adding solid nanoparticles to 1%. Migration phenomena of the film components, that is molecules with diol structures and silicon compounds depended on types of simulant and microstructures that induced swelling and release of the compounds. Film permeabilities increased, thereby facilitating air and humidity flow through the packaging.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Food Science & Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.