Abstract

The introgression of genetic material from alien species into wheat has become an important tool in modern wheat breeding. Ideally, only the trait of interest and no flanking material should be transferred. Random recombination between the genetic material is therefore of paramount importance. In a model system, we examined 17 recombinants putatively between chromosome 1D of wheat and 1R of rye with 60 random RFLP and three PCR markers. The recombinants had been generated by removing the normal effect of the Ph1 gene in the wheat background. Amongst the nine short-arm recombinants, three breakpoints were identified but no differentiation could be made between the five proximal recombinants. For the eight long-arm recombinants analysed only two breakpoints were identified with 36 markers. However, only a single RFLP marker was able to differentiate between the recombinants. Indeed the long-arm results are consistent with the possibility that only the rye telomeric region had been transferred. These results indicate either a strong clustering of the RFLP markers near the centromere or else imply that recombination induced between wheat and rye in the absence of the normal effect of the Ph1 gene occurs at only restricted sites. The results allow new primary recombinants to be selected for intercrossing to generate secondary recombinants which are expected to have a smaller interstitial rye segment than that present in DR-A1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.