Abstract

The formation of radiation-induced dislocation loops and voids in tantalum at 180(2), 345(3) and 590(5)°C was assessed by 3MeV proton irradiation experiments and subsequent damage characterisation using transmission electron microscopy. Voids formed at 345(3)°C and were arranged into a body centred cubic lattice at a damage level of 0.55 dpa. The low vacancy mobility at 180(2)°C impedes enough vacancy clustering and therefore the formation of voids visible by TEM. At 590(5)°C the Burgers vector of the interstitial-type dislocation loops is a<100>, instead of the a/2 <111> Burgers vector characteristic of the loops at 180(2) and 345(3)°C. The lower mobility of a<100> loops hinders the formation of voids at 590(5)°C up to a damage level of 0.55 dpa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.