Abstract

Cyclic nucleotides are involved in the control of pulmonary vascular tone. In the present study, we measured the cyclic nucleotide specific phosphodiesterase (PDE) activity in the media of bovine isolated main pulmonary artery (MPA). Total cAMP- and cGMP-PDE activities were measured in microsomal and cytosolic fractions. Both cyclic nucleotides were hydrolysed in these subcellular fractions at consistently higher rate in the cytosolic than in the microsomal fraction. Using different classes of PDE modulator, at least four PDE isoforms (PDE1, 3, 4 and 5) were identified in these fractions. PDE3 (cilostamide-sensitive), PDE4 (rolipram-sensitive) and PDE5 (zaprinast- and DMPPO-sensitive) isoforms appeared as the main isozymes implicated in the cAMP and cGMP hydrolytic activities. Calcium–camodulin stimulated PDE activity (PDE1) was mainly present in the cytosolic fraction. PDE2, although present, had a lower hydrolytic activity since addition of its specific inhibitor, erythro-9-(2-hydroxy-3nonyl)adenine (EHNA), to a combination of inhibitors of PDE3, 4 and 5 produced no further significant reduction in the enzymatic activity. Resolution of PDE activities from the cytosolic fraction using anion exchange chromatography confirmed this finding. Functional experiments performed in endothelium-denuded rings of rat MPA revealed that all specific PDE inhibitors used relaxed precontracted vascular smooth muscle preparations in a concentration-dependent manner. The rank order of potency was cilostamide >zaprinast>rolipram>>EHNA. The present study demonstrates the presence in the smooth muscle cells-containing layer of MPA of PDE1, 3, 4 and 5 isoforms and suggests that PDE3, 4 and 5 are the main enzymes involved in the control of vascular tone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.