Abstract

P-ATPases are transmembrane proteins that hydrolyse ATP to drive cations or other substances across biomembranes. In this study we present the characterisation of a novel P-ATPase from the apicomplexan parasite Cryptosporidiumparvum (CpATPase3), an opportunistic pathogen in autoimmune deficiency syndrome patients, for which no treatment is available. The single copy gene encodes 1488 amino acids, predicting a protein of 169.7 kDa. Primary sequence analysis, as well as an extensive phylogenetic reconstruction, indicated CpATPase3 belongs to a novel class of eukaryotic-specific P-ATPases (Type V) with undefined substrate preferences. Transcription and translation of the gene were confirmed by reverse-transcriptase polymerase chain reaction, and Western blot analysis of sporozoite protein extracts. Immunofluorescent microscopy of C. parvum sporozoites using rabbit antiserum raised against a glutathione-S-transferase-CpATPase3 (GST-ATP3) fusion protein showed that the parasite transporter was located within the apical complex associated with the parasite host-invasion machinery. Overall, these data demonstrate the diversity of C. parvum transporters, and raise the potential of Type V P-ATPases as apicomplexan-specific drug targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.