Abstract
This paper describes uniaxial compression tests on a melt-extruded closed-cell Low-Density Polyethylene (LDPE) foam. The stress-strain response shows the mechanical behaviour of the foam is predominantly transversely isotropic viscoelastic and compressible. Images analysis is used to estimate the Poisson’s ratio under large strains. When the deformation is less than 5 percent, the kinematics and mechanical response of the polymer foam can be well-described by a linear compressible transversely isotropic elastic model. For large strain, a method of manipulating experimental data obtained from testing in the principal and transverse directions (stress vs strain and Poisson’s ratio) in order to estimate the uniaxial compression response of the foam at any arbitrary orientation is proposed. An isotropic compressible hyperfoam model is then used to implement this behaviour in a finite element code.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.