Abstract

This paper proposes a scheme for recognition of English characters based on features derived from partitioning the character image into non-overlapping cells. A dynamic sliding window moves over each cell and pixel counts obtained from the image portion within the boundaries of the window, contribute towards generation of the feature vector. A total of four passes of the window over the image each with a different window size leads to the generation of a 30-element feature vector. A neural network (multi-layered perceptron) is used for classifying the 26 alphabets of the English language. Accuracies obtained are demonstrated to have been improved upon with respect to contemporary works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.