Abstract

Parathyroid hormone (PTH) is the principle regulator of calcium-phosphorus metabolism and bone turnover. Because of its central role in bone remodeling, recombinant human PTH (i.e., Forteo®; PTH(1-34)) has been developed for the treatment of osteoporosis. PTH(1-34) acts principally through the type I PTH/PTH-related peptide receptor (PTH1R), a classic seven transmembrane G protein-coupled receptor (GPCR). Intermittent treatment with PTH(1-34) promotes osteoblast and osteoclast recruitment through activation of PTH1R with resultant net bone gain. Recent studies have demonstrated that the complex metabolic effects induced by PTH1R stimulation are not entirely a consequence of conventional GPCR signaling. β-Arrestins, in addition to their desensitizing actions, also serve as multifunctional scaffolding proteins linking the PTH1R to signaling molecules independent of classic G protein-mediated second messenger-dependent pathways. In vitro, D-Trp(12), Tyr(34)-bPTH(7-34) [bPTH(7-34)], a β-arrestin-selective biased agonist for the PTH1R, antagonizes G protein signaling but activates arrestin-dependent signaling. In vivo, intermittent administration of bPTH(7-34) to mice induces anabolic bone formation independent of classic G protein-coupled signaling mechanisms. While both the conventional PTH1R agonists, PTH(1-34) and bPTH(7-34), stimulate anabolic bone formation in mice, the latter does not induce hypercalcemia nor does it increase markers of bone resorption. This newly recognized ability of β-arrestins to serve as signal transducers for the PTH1R independent of classic GPCR signaling represents a novel paradigm with therapeutic potential. Exploitation of β-arrestin-biased agonism may offer therapeutic benefit for the treatment of metabolic bone diseases such as osteoporosis with an improved side effect profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.