Abstract

The pseudo–linear transmission is a method for the transmission of high-speed time-division multiplexed (TDM) signals where fast variations of each channel waveform with cumulative dispersion allows important averaging of the intrachannel effects of fiber nonlinearity. The pseudo–linear transmission involves complex optimization of modulation format, dispersion mapping, and nonlinearity. These transmissions occupy a space somewhere between dispersion-mapped linear transmission and nonlinear soliton transmission. The pseudo-linear regime of transmission is characterized by a rapid pulse broadening, which results in a dramatic reduction of the solitonic effect on each pulse. As a result, full dispersion compensation can be used in this regime. Extensive analysis of pseudo-linear transmission and reviews of the TDM transmission experiments at 40 and 160 Gb/s have been provided in the chapter. Two new forms of nonlinear interactions between rapidly dispersing pulses namely intrachannel cross–phase modulation (IXPM) and intrachannel four–wave mixing (IFWM) are also presented. These two intrachannel effects are the most important nonlinear interactions in pseudo-linear transmission and determine the dispersion mapping even for the wavelength–division multiplexed (WDM) systems. Further, the chapter describes the semiconductor–based technologies that enable the development of stable and reliable high–speed transmitters and receivers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.