Abstract

A coupled thermomechanical gradient-enhanced continuum plasticity theory containing the flow rules of the grain interior and grain boundary areas is developed based on the assumption of small deformations. Two-dimensional finite element implementation for the proposed gradient plasticity theory is carried out to examine the micromechanical and thermal characteristics of small-scale metallic volumes. The thermodynamic conjugate microstresses are decomposed into dissipative and energetic components; correspondingly, the dissipative and energetic length scales for both the grain interior and grain boundary are incorporated in the proposed model, and an additional length scale related to the geometrically necessary dislocation-induced strengthening is also included. The derived constitutive framework and two-dimensional finite element model are validated through the comparison with the experimental observations conducted on microscale thin films. The proposed enhanced model is examined by solving the simple shear problem and the square plate problem to explore the thermomechanical characteristics of small-scale metallic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.