Abstract

A low-order model of the unforced, inviscid barotropic model is examined as a dynamical system. Analytic solutions, consisting of linear and nonlinear oscillations (Rossby waves), are obtained in appropriate limiting initial conditions. These solutions are periodic. With less restrictive initial conditions the system shows quasi-periodic behaviour at low energies and chaotic behviour at high energies. This transition is accompanied by frequency-locking and period-doubling. Quasi-periodic and chaotic behaviour may coexist in phase space for the same values of the model invariants. The results are interpreted in terms of perturbed integrable Hamiltonian systems. Considerations of the low-frequency variability of the atmosphere are also made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.