Abstract

The appearance of chaotic particle trajectories in steady, laminar, incompressible flow through a twisted pipe of circular cross-section is demonstrated using standard dynamical systems diagnostics and a model flow based on Dean's perturbation solutions. A study is performed to determine the parameters that control fluid stirring in this mixing device that has no moving parts. Insight into the chaotic dynamics are provided by a simple one-dimensional map of the pipe boundary onto itself. The results of numerical experiments illustrating the stretching of material lines, stirring of blobs of material, and the three-dimensional trajectories of fluid particles are presented. Finally, enhanced longitudinal particle dispersal due to the coupling between chaos in the transverse direction and the non-uniform longitudinal transport of particles is shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.