Abstract
Brake squeal has become an increasing concern to the automotive industry because of warranty costs and the requirement for continued interior vehicle noise reduction. Most research has been directed to either analytical and experimental studies of brake squeal mechanisms or the prediction of brake squeal propensity using finite element methods. By comparison, there is a lack of systematic analysis of brake squeal data obtained from a noise dynamometer. It is well known that brake squeal is a nonlinear transient phenomenon and a number of studies using analytical and experimental models of brake systems (e.g., pin-on-disc) indicate that it could be treated as a chaotic phenomenon. Data obtained from a full brake system on a noise dynamometer were examined with nonlinear analysis techniques. The application of recurrence plots reveals chaotic structures even in noisy data from the squealing events. By separating the time series into different regimes, lower dimensional attractors are isolated and quantified by dynamic invariants such as correlation dimension estimates or Lyapunov exponents. Further analysis of the recurrence plot of squealing events by means of recurrence quantification analysis measures reveals different regimes of laminar and random behaviour, periodicity and chaos-forming recurrent transitions. These results help to classify brake squeal mechanisms and to enhance understanding of friction-related noise phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.