Abstract
A variety of microelectromechanical (MEM) oscillators is governed by a version of the Mathieu equation that harbors both linear and cubic nonlinear time-varying stiffness terms. In this paper, chaotic behavior is predicted and shown to occur in this class of MEM device. Specifically, by using Melnikov's method, an inequality that describes the region of parameter space where chaos lives is derived. Numerical simulations are performed to show that chaos indeed occurs in this region of parameter space and to study the system's behavior for a variety of parameters. A MEM oscillator utilizing non interdigitated comb drives for actuation and stiffness tuning was designed and fabricated, which satisfies the inequality. Experimental results for this device that are consistent with results from numerical simulations are presented and convincingly show chaotic behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.