Abstract

The formation of segregation channels during the unidirectional solidification of base chilled ingots has been studied as a function of composition in binary Pb-Sn and Pb-Sb and ternary Pb-Sn-Sb alloys. The patterns of channel distribution were characterized in the binary and ternary systems and are described as functions of temperature gradients, growth rates, dendrite spacings, and interdendritic permeabilities. Channels appear to nucleate at random across a dendritic front and subsequently to interact as they propagate, decreasing in density across the front. Assuming that the interdendritic spacing is the characteristic distance for a liquid perturbation, yields critical effective Rayleigh numbers which lie within a factor of x40 for both metallic and aqueous systems. This correlation is close, considering the sensitivity to any assumed dimension and the range of material properties involved, and is taken to support a model for channel nucleation occurring close to the dendritic growth front.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.