Abstract
The room-temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium tetrafluoroborate, BMIM BF4, was employed as electrolyte in the electrosynthesis of thin polypyrrole (PPy) films on a Pt substrate, and the resulting PPy electrodes were electrochemically characterized. Electrochemical impedance spectroscopy (EIS) was used to comparatively investigate the electric behavior of PPy produced in the RTIL and the one produced in a traditional acetonitrile/lithium salt system, and charge–discharge curves in the range 2.0–4.0 V (vs. Li/Li+) were obtained in a 1.0 M LiBF4 propylene carbonate solution. Although a reduction of the specific capacity for the PPy obtained in the RTIL was observed, compared to that of the PPy film synthesized in the acetonitrilic electrolyte, its chronopotentiometric profile presented a plateau in the 2.7 V region. This is a remarkable result, considering that a linear decrease in this profile is usually observed for the majority of conducting polymer cathodes. PPy films obtained in BMIM BF4 presented globular morphology, with a special arrangement of nanoparticles constituting the globules; the EIS results indicated that this nanoscale structure may be contributing to a better definition of the redox characteristics during the PPy charge–discharge processes, as it happens for the well-organized structure of some metal oxides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.