Abstract
Two extraction methods for subsequent gas chromatographic (GC) determination of volatiles from freshly harvested and aged fennel fruit samples (Foeniculum vulgare Mill.,ssp. vulgare var. dulce) have been compared. Hydrodistillation followed by GC-FID and GC-MS analysis was used as a standard method for essential oil characterization, while static headspace followed by GC (SHS-GC-FID) was used as a comparative method for determination of volatile components. As the fennel fruit ages, there is a gradual loss of the volatile components as indicated by the lower yield of essential oil and lower content of volatiles, as indicated by the alternative SHS-GC-FID analysis. Slight differences observed for the main components (trans-anethole, estragole, fenchone, and limonene) using the two methods are negligible, indicating that these volatiles did not undergo chemical transformation during the sample preparation procedures. A difference in anisaldehyde content was observed when the composition of the hydrodistilled essential oil was compared with the SHS-GC-FIDanalysis of volatiles and explanation for the variation of anisaldehyde content and the origin of other compounds was suggested. Comparison of the obtained results showed that limonene oxides, carvone and carveolare detectable in SHS-GC-FID analysis of the aged fennel fruits, while in hydrodistilled samples analyzed by GC-FID they were not present. Another observed difference was the appearance of products in significant amounts with higher retention times than trans-anethole, namely threo- and erythro-anethole β-hydroxymethylether and anethole glycol that are not detectable in the essential oil obtained by hydrodistillation. So, the relative abundance of the major components is comparable between these two methods for fennel seed up to 3 years from harvest and they can be used interchangeably depending on the purpose and amount of material. Furthermore, SHS-GC-FID can be used for assessment of maximum storage time and quality of fennel fruit suitable for human consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.