Abstract
A nanocrystalline face-centered cubic (fcc) solid solution of 6% Fe in Cu was prepared by high-energy ball milling, and annealed at temperatures from 200 to 360°C to induce chemical unmixing. The chemical state of the material was characterized by three-dimensional atom probe microscopy, Mössbauer spectrometry and X-ray powder diffractometry. The unmixing was heterogeneous, with iron atoms forming iron-rich zones that thicken with further annealing. The phonon partial density of states (pDOS) of 57Fe was measured by nuclear resonant inelastic X-ray scattering, showing the pDOS of the as-prepared material to be that of an fcc crystal. The features of this pDOS became broader in the early stages of unmixing, but only small changes in average phonon frequencies occurred until the body-centered cubic (bcc) phase began to form. The vibrational entropy calculated from the pDOS underwent little change during the early stage of annealing, but decreased rapidly when the bcc phase formed in the material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.