Abstract

Proton T(2) relaxation times of cerebral water and metabolites were measured before, during, and after transient forebrain ischemia in rat at 9.4 T using localized proton magnetic resonance spectroscopy ((1)H-MRS) with Hahn echoes formed at different echo times (TEs). It was found that the T(2) values of water and N-acetyl aspartate (NAA) methyl, but not total creatine (tCr) methyl, decrease significantly (approximately 10%) during ischemia, and this T(2) reduction is reversed by reperfusion. The T(2) reduction observed for NAA was most likely caused by the extravascular component of the blood oxygenation level-dependent (BOLD) effect induced by a drastically increased deoxyhemoglobin content during ischemia. The absence of T(2) changes for tCr can probably be explained by the fact that the BOLD-related T(2) decrease was counterbalanced by the conversion of phosphocreatine (PCr) to creatine (Cr), which has a longer T(2) than PCr, during ischemia. The changes in T(2) should be taken into account for the quantification of metabolite concentrations during ischemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.