Abstract

BackgroundMolluscs, including snails, are prone to parasite infection, which can lead to massive physiological and behavioural changes, yet many of the molecular components involved remain unresolved. Central to this point is the neural system that in snails consists of several ganglia that regulate the animals’ physiology and behaviour patterns. The availability of a genomic resource for the freshwater snail Biomphalaria glabrata provides a mean towards the high throughput analysis of changes in the central nervous system (CNS) following infection with Schistosoma miracidia.ResultsIn this study, we performed a proteomic analysis of the B. glabrata CNS at pre-patent infection, providing a list of proteins that were further used within a protein-protein interaction (PPI) framework against S. mansoni proteins. A hub with most connections for both non-infected and infected Biomphalaria includes leucine aminopeptidase 2 (LAP2), which interacts with numerous miracidia proteins that together belong to the immunoglobulin family of cell adhesion related molecules. We additionally reveal the presence of at least 165 neuropeptides derived from the precursors of buccalin, enterin, FMRF, FVRI, pedal peptide 1, 2, 3 and 4, RYamide, RFamide, pleurin and others. Many of these were present at significantly reduced levels in the snail’s CNS post-infection, such as the egg laying hormone, a neuropeptide required to initiate egg laying in gastropod molluscs.ConclusionsOur analysis demonstrates that LAP2 may be a key component that regulates parasite infection physiology, as well as establishing that parasite-induced reproductive castration may be facilitated by significant reductions in reproduction-associated neuropeptides. This work helps in our understanding of molluscan neuropeptides and further stimulates advances in parasite-host interactions.

Highlights

  • Molluscs, including snails, are prone to parasite infection, which can lead to massive physiological and behavioural changes, yet many of the molecular components involved remain unresolved

  • Using the genome [12] derived protein database, we identified a total of 125 peptides that matched to 68 precursor proteins in the non-infected B. glabrata central nervous system (CNS)

  • We provide a comprehensive analysis of the B. glabrata CNS peptides, including those that may interact with S. mansoni miracidia upon infection, as well as the neuropeptides that vary in abundance post-infection

Read more

Summary

Introduction

Molluscs, including snails, are prone to parasite infection, which can lead to massive physiological and behavioural changes, yet many of the molecular components involved remain unresolved. Central to this point is the neural system that in snails consists of several ganglia that regulate the animals’ physiology and behaviour patterns. The fresh water snail Biomphalaria glabrata is of medical significance as it acts as an intermediate host for the transmission of human intestinal schistosomiasis, caused by Schistosoma mansoni [1]. One critical phase in the life-cycle requires that a miracidium, the waterborne larval stage of S. mansoni, locate and infect B. glabrata where it can initiate asexual reproduction within the host. Infected snails eventually release free-swimming cercariae that must in turn locate and infect a human host for the cycle to continue.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.