Abstract

The additive manufacture (AM) of the AlSi10Mg alloy has become the subject of considerable attention, especially for production of complex parts in engines. Because such parts can be exposed to elevated temperatures during operation, material stability is very important, but as yet little is known about it in relation to AM. Here, we studied changes of the AlSi10Mg alloy produced by selective laser melting (SLM) after its exposure to temperatures between 120 and 180 °C. At each temperature, hardness evolution was measured, with hardness increasing over time. The maximum hardness state obtained at 160 °C was selected for further studies comprising microstructural analysis by scanning and transmission electron microscopy, chemical composition analysis and mechanical properties assessment. Transmission microscopy revealed nano-scale acicular precipitates that caused a slight increase in the yield strength of the alloy together with a significant drop in elongation. Electron energy loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) showed that the precipitates surprisingly consisted of pure Si. To provide a comparison, conventional regimes of heat treatment (stress-relief and T6) were applied. Despite a considerable loss in mechanical performance, thermal instability was no longer observed. Overall, our results indicate that operating temperatures are a key factor in ensuring the smooth operation of AM parts of the AlSi10Mg alloy. In respect to that, we offer recommendations for their industrial use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.