Abstract

Mine drainage is an important environmental disturbance that affects the chemical and biological components in natural resources. However, little is known about the effects of neutral mine drainage on the soil bacteria community. Here, a high-throughput 16S rDNA pyrosequencing approach was used to evaluate differences in composition, structure, and diversity of bacteria communities in samples from a neutral drainage channel, and soil next to the channel, at the Sossego copper mine in Brazil. Advanced statistical analyses were used to explore the relationships between the biological and chemical data. The results showed that the neutral mine drainage caused changes in the composition and structure of the microbial community, but not in its diversity. The Deinococcus/Thermus phylum, especially the Meiothermus genus, was in large part responsible for the differences between the communities, and was positively associated with the presence of copper and other heavy metals in the environmental samples. Other important parameters that influenced the bacterial diversity and composition were the elements potassium, sodium, nickel, and zinc, as well as pH. The findings contribute to the understanding of bacterial diversity in soils impacted by neutral mine drainage, and demonstrate that heavy metals play an important role in shaping the microbial population in mine environments.

Highlights

  • The mining of metal ores and coal can lead to a variety of environmental problems, including deforestation, soil erosion, and the flooding of low-lying areas

  • Significant differences between the drainage and soil samples were observed for copper, nickel, potassium, sodium, and zinc (Table 1)

  • The concentrations of the heavy metals were higher in the drainage samples, while those of sodium and potassium were higher in the soils

Read more

Summary

Introduction

The mining of metal ores and coal can lead to a variety of environmental problems, including deforestation, soil erosion, and the flooding of low-lying areas. One of the most critical issues in mine environments is the natural oxidation (chemical and biological) of sulfide mineral tailings that are exposed to water, oxygen, and microorganisms. This oxidation is responsible for the generation of mine drainage that compromises the quality of soil, surface water, and sub-surface water bodies, affecting overall biodiversity [1,2]. Mine drainage is a multi-factor pollutant (considering aspects such as acidity or alkalinity, salinization, metal toxicity, and sedimentation processes), with the importance of each factor depending on the characteristics of the environment affected [2,3,4]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.