Abstract

The regulation of trehalose breakdown during dormancy and the induction of germination in yeast ascospores was studied both by in vivo high-resolution NMR spectroscopy and in vitro assays of trehalase activity. Natural-abundance (13)C NMR spectra taken during the induction of germination with glucose and phosphate showed a rapid breakdown of part of the trehalose content. The presence of both glucose and phosphate was important for maximal trehalose breakdown. The (13)C NMR spectra showed that the externally added glucose and the internal trehalose were metabolized mainly to glycerol and ethanol. Under these conditions of nitrogen deprivation, full germination is not possible and trehalose breakdown stopped after approximately 1 hr. At this moment resynthesis of trehalose occurred while glycerol and ethanol production from the exogenous glucose continued. In complex media where full spore germination can occur, trehalose breakdown was more pronounced. Measurements of trehalase activity in spore extracts made after addition of varying amounts of glucose and phosphate to the spores revealed a sudden 10-fold increase in the activity of trehalase, within the first minutes of spore germination. The activation was transient: after reaching a maximum between 5 and 10 min, the activity declined back to low values during the next hours. The increase in trehalase activity was not inhibited by cycloheximide or by anaerobic conditions. The decline in trehalase activity that occurred after the initial activation could be correlated with the extent of trehalose breakdown as measured by (13)C NMR. In addition to the increase in trehalase activity, differences in the control properties were found between the enzymes from dormant and germinating spores. Trehalase from dormant spores was strongly inhibited by ATP at a concentration of approximately 0.5 mM, which corresponds with the ATP concentration found in dormant spores. On the other hand, trehalase from germinating spores was not inhibited by ATP up to the much higher ATP concentrations that are found in germinating spores. It is suggested that the low activity and the stringent ATP feedback inhibition of trehalase from dormant spores are responsible for the very slow mobilization of the huge amount of trehalose in dormant spores. Therefore, dormancy seems to be caused primarily by extreme curtailment of the energy production within the spore at one selective and primary point. The switch towards high activity and low ATP inhibition upon induction of germination is suggested to be responsible for the breaking of dormancy and for the rapid breakdown of trehalose that occurs during the initial phase of germination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.