Abstract

Chemical transitions after atmospheric pressure plasma irradiation were investigated by evaluating intermolecular attractions and atomic and molecular reactions. Gold, titanium and stainless-steel alloy samples were ground with #800 grit SiC waterproof paper and nitrogen gas atmospheric plasma irradiation was conducted. The surface free energies of the treated alloys were calculated and compared statistically. X-ray photoelectron spectroscopy analysis was performed.The surface free energies of all metal surfaces treated by plasma irradiation were 1.5-times higher than those of the untreated metals. The energy of the hydrogen bonding component increased, and all alloy surfaces were coated with metal oxide after only a short period of plasma irradiation. The surfaces oxidized by plasma exhibited a high active energy, mainly due to an increase in the hydrogen bonding component. Reactions with oxygen in the air were promoted on the clean surfaces with exposed reactive elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.