Abstract

A series of activated carbons with different degrees of activation were oxidized with H 2O 2, (NH 4) 2S 2O 8 and HNO 3 in order to introduce different oxygen surface complexes. Changes in the surface chemistry of the activated carbons after their oxidizing treatments were studied by different techniques including temperature-programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), Fourier transformed infrared spectroscopy (FTIR), titrations with HCl and NaOH, measurements of the pH of the point of zero charge and catalytic dehydration of methanol. Results showed that treatment with (NH 4) 2S 2O 8 fixed the lowest amount of both total oxygen and surface acid groups. However, this treatment yielded the acid groups with the highest acid strength. This could be because it favors fixation of carboxyl groups close to other groups, such as carbonyl and hydroxyl, which enhances their acidity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.