Abstract

Oestrogen is capable of modulating autonomic outflow and baroreflex function via actions on groups of neurones in the brainstem. We investigated the presence of oestrogen receptor (ER) alpha in a part of the nucleus of the solitary tract (NTS) associated with central cardiovascular control, aiming to determine whether ERalpha mRNA and protein expression is correlated with levels of circulating oestrogen during the oestrous cycle. Polymerase chain reaction (PCR) detected ERalpha mRNA in the NTS at each stage of the oestrous cycle, from ovariectomised, sham-operated and male rats. Real-time PCR showed variations in ERalpha mRNA expression during the oestrous cycle, with the highest levels seen in oestrus, and lowest levels in metoestrus (P < 0.05 versus oestrus) and proestrus (P < 0.05 versus oestrus). Expression in males was lower than in dioestrus and oestrus females (P < 0.05). After ovariectomy, ERalpha mRNA levels were decreased compared to sham-operated animals (P < 0.01). Confocal fluorescence immunohistochemistry with stereological analysis showed that numbers of ERalpha immunoreactive cell nuclei per mm(3) of tissue in the caudal NTS were significantly greater in proestrus than in other groups of rats (P < 0.05). There were also differences among the groups in the extent of colocalisation of ERalpha in neurones immunoreactive for tyrosine hydroxylase and nitric oxide synthase. These results imply a complex pattern of region-specific oestrogen signalling in the NTS and suggest that ERalpha expression in this important autonomic nucleus may be related to circulating oestrogen levels. This may have consequences for the regulation of autonomic tone and baroreflex sensitivity when oestrogen levels decline, for example following menopause.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.