Abstract
We studied the effects of exhausting exercise and exercise training on skeletal muscle mitochondrial membrane fluidity and lipid peroxidation in rats. The first part of the study involved 60 untrained rats divided into six equal groups. Of the total number 10 rats were sedentary and acted as controls. The remaining 50 rats exercised to exhaustion and were sacrificed at 0-h, 24-h, 48-h, 72-h, and 96-h post-exercise. The second part of the study involved 40 rats which were divided into four equal groups. Of these 10 rats were sedentary and acted as controls. The remaining 30 rats underwent 8 weeks of exercise training. They were then subjected to a single period of exhausting exercise and were sacrificed at 0-h, 24-h and 48-h post-exercise. Membrane fluidity was measured using the fluorescence polarization method. Lipid peroxidation was estimated by determining the thiobarbituric acid-reactive substances (TBARS) in mitochondria. In the untrained rats, mitochondrial fluorescence polarization and TBARS contents were significantly increased post-exercise compared with the sedentary controls (P < 0.05). They did not return to near control levels until 96 h and 48 h, respectively. In the trained rats, fluorescence polarization was raised compared with the sedentary controls but this was significantly lower than those measured at the same times of the untrained group post-exercise (P < 0.05). Exhausting exercise decreased membrane fluidity and increased lipid peroxidation in rat skeletal muscle mitochondria. These effects were relieved to some extent by exercise training.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Applied Physiology and Occupational Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.