Abstract

Leptin replacement rescues the phenotype of morbid obesity and hypogonadism in leptin-deficient adults. However, leptin's effects on insulin resistance are not well understood. Our objective was to evaluate the effects of leptin on insulin resistance. Three leptin-deficient adults (male, 32 yr old, BMI 23.5 kg/m(2); female, 42 yr old, BMI 25.1 kg/m(2); female, 46 yr old, BMI 31.7 kg/m(2)) with a missense mutation of the leptin gene were evaluated during treatment with recombinant methionyl human leptin (r-metHuLeptin). Insulin resistance was determined by euglycemic hyperinsulinemic clamps and by oral glucose tolerance tests (OGTTs), whereas patients were on r-metHuLeptin and after treatment was interrupted for 2-4 wk in the 4th, 5th, and 6th years of treatment. At baseline, all patients had normal insulin levels, C-peptide, and homeostatic model assessment of insulin resistance index, except for one female diagnosed with type 2 diabetes. The glucose infusion rate was significantly lower with r-metHuLeptin (12.03 +/- 3.27 vs. 8.16 +/- 2.77 mg.kg(-1).min(-1), P = 0.0016) but did not differ in the 4th, 5th, and 6th years of treatment when all results were analyzed by a mixed model [F(1,4) = 0.57 and P = 0.5951]. The female patient with type 2 diabetes became euglycemic after treatment with r-metHuLeptin and subsequent weight loss. The OGTT suggested that two patients showed decreased insulin resistance while off treatment. During an off-leptin OGTT, one of the patients developed a moderate hypoglycemic reaction attributed to increased posthepatic insulin delivery and sensitivity. We conclude that, in leptin-deficient adults, the interruption of r-metHuLeptin decreases insulin resistance in the context of rapid weight gain. Our results suggest that hyperleptinemia may contribute to mediate the increased insulin resistance of obesity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.