Abstract

Aneurismal subarachnoid hemorrhage (aSAH) is a neurovascular disease produced by the rupture of the cerebral arteries and the extravasation of blood to the subarachnoid space and is accompanied by severe comorbidities. Secondarily associated vasospasm is one of the main side effects after hydrocephalus and possible rebleeding. Here, we analyze the alterations in function in the arteries of a rat model of SAH.For this, autologous blood was injected into the cisterna magna. We performed electrophysiological, microfluorimetric, and molecular biology experiments at different times after SAH to determine the functional and molecular changes induced by the hemorrhage. Our results confirmed that in SAH animals, arterial myocytes were depolarized on days 5 and 7, had higher [Ca2+]i on baseline, peaks and plateaus, and were more excitable at low levels of depolarization on day 7, than in the control and sham animals. Microarray analysis showed that, on day 7, the sets of genes related to voltage-dependent Ca2+ channels and K+ dynamics in SAH animals decreased, while the voltage-independent Ca2+ dynamics genes were over-represented. In conclusion, after SAH, several mechanisms involved in arterial reactivity were altered in our animal model, suggesting that there is no unique cause of vasospasm and alterations in several signaling pathways are involved in its development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.