Abstract
Altered concentrations of amyloid-β (Aβ) peptide and Tau protein in the cerebrospinal fluid (CSF) are thought to be predictive markers for Alzheimer's disease (AD). Transgenic mice overexpressing human amyloid precursor protein (APP) have been used to model Aβ pathology, but concomitant changes in Aβ and Tau in CSF have been less well studied. We measured Aβ and Tau in the brains and CSF of two well-characterized transgenic mouse models of AD: one expressing human APP carrying the Swedish mutation (APP23) and the other expressing mutant human APP and mutant human presenilin-1 (APPPS1). Both mouse models exhibit Aβ deposition in the brain, but with different onset and progression trajectories. We found an age-related 50 to 80% decrease in Aβ42 peptide in mouse CSF and a smaller decrease in Aβ40, both inversely correlated with the brain Aβ load. Surprisingly, the same mice showed a threefold increase in total endogenous murine Tau in CSF at the stages when Aβ pathology became prominent. The results mirror the temporal sequence and magnitude of Aβ and Tau changes in the CSF of patients with sporadic and dominantly inherited AD. This observation indicates that APP transgenic mice may be useful as a translational tool for predicting changes in Aβ and Tau markers in the CSF of AD patients. These findings also suggest that APP transgenic mouse models may be useful in the search for new disease markers for AD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.