Abstract
This paper presents a robust algorithm for voice activity detection (VAD) based on change point detection in a generalized autoregressive conditional heteroscedasticity (GARCH) process. GARCH models are new statistical methods that are used especially in economic time series and are a popular choice to model speech signals and their changing variances. Change point detection is also important in economic sciences. In this paper, no distinct probability functions are assumed for speech and noise distributions. Also, to detect speech/nonspeech intervals, no likelihood ratio test (LRT) is employed. For testing parameter constancy in GARCH models, the algorithm of the Cramer-von Mises (CVM) test is described. This test is a nonparametric test and is based on the empirical quantiles. We show that VAD is related to the parameter constancy test in GARCH process, and we illustrate several examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Audio, Speech, and Language Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.