Abstract

This study attempted to obtain various products from carbon dioxide photoreduction using TiO2 catalysts doped with different transition metals of Mn, Fe, Co, Ni, Cu, and Zn (MTiO2). The band-gaps of MTiO2 catalysts decreased compared to pure TiO2, except for ZnTiO2. The intensities in photoluminescence curves, which can predict the recombination of excited electrons and holes, were weaker in MTiO2 catalysts than that of pure TiO2. The products obtained from carbon dioxide photoreduction were strongly related to the redox potential of carbon dioxide and the locations of band-gaps of MTiO2 catalysts. Methane was predominantly obtained in pure TiO2, FeTiO2, and NiTiO2 catalysts, and methanol and carbon monoxide were selectively produced in the CuTiO2 and ZnTiO2 catalysts, respectively. This result suggests that the desired product from carbon dioxide photoreduction can be selectively synthesized by doping certain metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.