Abstract

The I–V characteristics of the sliding contact of metallic composites of grade 45 steel without a lubricant are presented. Steel-based composites are shown to increase the actual electric-contact area due to the appearance of electric discharges, which provide the main passage of an electric current with a density up to 300 A/cm2. Copper-based composites cannot initiate electric-discharge conduction because of the fracture of the contact zone material at a current density higher than 50 A/cm2. The electrical resistivity of the contact layer of metallic composites is calculated. It is found that, during friction with a high current density, the electrical resistivity of the contact layer approaches the electrical resistivity of graphite. It is experimentally shown that the actual electric-contact area can be increased by the introduction of a Pb-Sn melt into the friction zone and reaching a current density higher than 300 A/cm2 in the contact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.