Abstract

Al 2 O 3 incorporated HfO2 films grown by atomic layer deposition were investigated using various measurement tools. The accumulation capacitance of the Al2O3 incorporated into HfO2 film increases as the postannealing temperature increases because of changes in interfacial and upper layer thickness and in interfacial stoichiometry. The core-level energy state of a 15 Å thick film shows a shift to higher binding energy, as the result of silicate formation and Al2O3 incorporation. The incorporation of Al2O3 into the HfO2 film has no effect on silicate formation at the interface between the film and Si, while the ionic bonding characteristics and hybridization effects are enhanced compared to a pure HfO2 film. Any dissociated Al2O3 on the film surface is completely removed by a vacuum annealing treatment over 850 °C, while HfO2 contributes to Hf silicide formation on the surface of the film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.