Abstract

Spatial and temporal shifts in rainfall patterns over South Asia and the adjoining Seas during the pre-monsoon season have been observed over the past 2 decades from 2000 to 2019. Aerosol particles suspended above the boundary layer are a contributing factor to these changes. These particles not only alter cloud characteristics, but also diminish the lapse rate, thereby suppressing convective activity, leading to precipitation anomalies. Over the past 2 decades, high-rainfall regions have experienced declining rainfall, while low-rainfall regions have received increased rainfall. Coinciding with notable anomalies in precipitation, contrasting trends in aerosol optical depth, particularly due to absorbing aerosols in the elevated regions of the atmosphere, are seen. Apart from aerosols, several factors are considered that are critical in modifying precipitation patterns over the study region, such as water vapor content, convective processes, and lower-level relative humidity. We observed a potential transport of excess water vapor by ambient circulation from the oceanic regions having reduced rain, such as Bay of Bengal and the Arabian Sea, to higher latitudes enabling precipitation anomaly at distant locations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.