Abstract

Abstract The connection of the wellbore to the hydrocarbon resource volumes via effective fracture stimulation is a critical factor in unconventional reservoir completions. Various well construction and dynamic placement methods are used to distribute treatment volumes into targeted sections of the wellbore. This paper provides some insights into the effectiveness of hydraulic fracture stimulation process using Fiber Optics (FO): distributed acoustic sensing (DAS) and distributed temperature sensing (DTS). This paper reviews examples from multiple wells where FO has been used to gain a better understanding of three highly debated fracture stimulation distribution topics: Diversion, Stage Isolation and Overflushing. Diversion is increasingly being used as a way to improve the efficiency of hydraulic fracture stimulation distributions. The effectiveness of the diversion techniques has traditionally been judged on the basis of surface pressure response during treatment and ultimately, from production comparisons to reference wells. Unfortunately, getting clear answers from production performance takes significant time. FO allows for monitoring of the diversion process in real-time. Analysis of DAS and DTS responses is used to quantify diversion efficiency in re-directing hydraulic fracture stimulation from dominant perforation clusters to those not being stimulated. Lack of isolation between stages has frequently been observed in wells with diagnostics. There is consensus amongst the completion community that communication between stages is highly undesirable because the energy and materials of the stimulation are partially or totally misdirected from the target interval to other portions of the wellbore. The analysis of DAS and DTS not only can help determine the frequency of occurrence of communication between stages in cemented and uncemented horizontal wells but also can provide insights about the different communication paths. Fiber Optic distributed sensing in conjunction with complementary diagnostics is also being used to investigate if connections are being maintained at the end of the treatment between the newly created fracs and the wellbore. The use of integrated diagnostics allows evaluation of the frequency in which overflushing (over-displacement) occurs in both vertical and horizontal wells and its impact on well inflow performance where production profiling data is available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.