Abstract

Medical textiles are all fiber-based products and structures which are utilized for emergency treatment, clinical, surgical and hygienic purposes. It is an exceptionally particular and bio viable specialized material, utilized for clinical and cleanliness applications. Volumes of clinical waste being created in excess of 60 million tons yearly around the world. According to the current investigation reports and information, the worldwide clinical waste administration market was esteemed at USD 11.77 billion in the year 2018 and will reach at 17.89 billion by the year 2026 at a compound annual growth rate (CAGR) of 5.3%. Over the world, out of the measure of waste created by medical care activities, about 85% is general waste and staying 15% is viewed as unsafe material that might be irresistible, poisonous or radioactive. The following particular reasons are very harmful for the environment in the upcoming future. The waste management policy of medical textile is a vital fact for the world. The potential and effectual solution is recycling of these medical wastes. Current solutions for 100% recycling of medical textiles are chemical treatment, incineration, and autoclaving. But the most innovative solution of medical textiles is molecular tagging/tagging of fibers. Medical textile market is producing state-of-the-art polymeric textile implantable devices that are redefining traditional materials and methods of surgery. Developing polymer innovation has yielded a wide scope of uses of implantable clinical material or biotextiles. Due to world Covid-19 pandemic situation, the requirement of medical textiles already has been increased almost double from last year. It has been observed that the market value of medical textiles will be in optimum position. In the year 2019, the global market worth of medical textiles was US$ 17.5 billion. In the present world, the current medical textiles like implantable and non-implantable categories are not applying for recycling process or end used of their life cycle. In this paper, we will discuss about potential solutions for recycling medical textiles like—by using conductive polymers, maintaining ε-Poly-lysine, non-fibrous biomass, bioactive fibers, etc. But there are still some challenges for recycling like—maintain 100% polymeric bonds, bacterial effect, flexibility and sustainability for clinical performance after recycling the specific product. In this paper, we are presenting the scientific methods, mechanisms, and procedures that used to overcome the aforementioned challenges in the recycling methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.