Abstract

The identification of physicochemical factors that govern toxic effects of nanomaterials (NMs) is important for the safe design and synthesis of NMs. The release of metal cations from NMs in cell culture medium and the role of the metal cations in cytotoxicity are still under dispute. Here, we report that removal of NMs such as ZnO nanoparticles (NPs) by centrifugation, the procedure commonly used for the estimation of released ion concentration in nanotoxicology, was incomplete even at a relative centrifugal force of 150,000 × g. In this sense, the Zn concentration in supernatant measured by inductively coupled plasma-mass spectrometry cannot be regarded as the concentration of free Zn(2+) ions which were released from ZnO NPs in cell culture medium. This suggests the urgent need to develop relevant analytical techniques for nanotoxicology. The toxic contribution of released Zn(2+) ions to the A549 cell lines was estimated to be only about 10%. We conclude that the cytotoxicity associated with ZnO NPs is not a function of the Zn concentration, suggesting that other factors play an important role in the toxic effect of ZnO NPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.