Abstract

An analysis of the H2O maser emission toward the source NGC 7538N, which is associated with an active star-forming region, is reported. The analysis is based on 24 years of monitoring in the 1.35-cm line using the the 22-m radio telescope of the Pushchino Radio Astronomy Observatory in 1981–2005 with a spectral resolution of 0.101 km/s. Individual spectral components have been isolated, and temporal drifts in their radial velocities found. From time to time, the drifts were accompanied by velocity jumps. This can be explained if there are chains consisting of clumps of material that are elongated in the radial direction toward the star and have a radial-velocity gradient. In 1982–2005, two maser activity cycles were observed, during which the chains were activated. We propose that shocks consecutively cross the chain elements and excite maser emission in them. The longest chain, at a radial velocity of −58 km/s, has not fewer than 15 links. For a shock velocity of 15 km/s, the chain step is estimated to be ≤1.5 AU. The chains could be located in a circumstellar disk with a width of ≤1015 cm. A structure in the form of a rotating nonuniform vortex with the rotation period of about 1.6 years has also been detected. The translational motion of the vortex may be a consequence of its orbital motion within the protoplanetary disk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.