Abstract

Non-reversing and reversing double-step strain flows on concentrated entangled polystyrene in diethyl phthalate or tricresyl phosphate were employed to characterize transient entanglement properties affecting subsequent chain stretch and relaxation. An extended Doi-Edwards tube theory for double-step strain flows was employed to retrieve the phenomenological stretch relaxation function following a second large probe strain imposed on specially selected time scales that permit a direct assessment of the modified chain stretch with varying transient entanglement structure. Compared with single-step strain result, the maximum mean-square segmental stretch was noted to reduce by as much as 33% and 48% for non-reversing and reversing flows, respectively, with a probe strain γ2=7.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.